BACOGENIN-A₁: A NOVEL DAMMARANE TRITERPENE SAPOGENIN FROM *BACOPA MONNIERA**†

D. K. KULSHRESHTHA and R. P. RASTOGI Central Drug Research Institute, Lucknow, India

(Received 13 September 1972. Accepted 27 October 1972)

Key Word Index—Bacopa monniera; Scrophulariaceae; Sapogenin; bacogenin-A₁; dammarene-type triterpene.

Abstract—The constitution of bacogenin- A_1 , obtained from the acid hydrolysate of bacoside-A, has been established as 3,18-dihydroxy-20 \rightarrow 25-cpoxy-22(or 23)-methyl-24-nor-dammar-22-en-16-one. The treatment of di-O-acetylbacogenin- A_1 with RuO₄ led to a diol instead of the usual dioxo product.

INTRODUCTION

THE TWO crystalline saponins, bacoside-A, m.p. 250° and bacoside-B, m.p. 203° isolated earlier from *Bacopa monniera* Wettst. on acid hydrolysis, yielded glucose and arabinose and a mixture of four aglycones which were designated as bacogenins-A₁, m.p. 242°, R_f 0·15; A₂, m.p. 222°, R_f 0·19; A₃, m.p. 190°, R_f 0·34; and A₄, m.p. 170°, R_f 0·40 (TLC on silica gel G, $C_6H_6 + 5\%$ MeOH).¹

Bacogenin-A₁, the most polar component in the aglycone mixture, was anticipated to be structurally closest, if not identical, to the genuine sapogenin. On the basis of earlier chemical data its structure was tentatively proposed as a trihydroxydammar-en-one. The present paper deals with the detailed physico-chemical studies carried out subsequently which have led to the elucidation of the structure of bacogenin-A₁ as a dammarene having a rearranged side chain.

RESULTS AND DISCUSSIONS

Bacogenin-A₁, C₃₀H₄₈O₄ (M⁺ 472) revealed the presence of OH (3410, cm⁻¹), C=O in a 5-membered ring (1730 cm⁻¹), gem. dimethyl (1375 cm⁻¹, (d), C=C-H (1660, 820 cm⁻¹), and ether (1080 cm⁻¹). Its PMR spectrum displayed signals for seven quaternary methyls (3H each, s, 0.783, 0.875, 0.958, 1.06, 1.26, 1.38, 1.53 ppm), -CH₂COCH (3H, bs, 2.20 ppm), -CH₋O-(1H, q, J 9.5 and 5 Hz, 3.18 ppm), -CH₂-O-(2H, AB q, J_{AB} 11 Hz centered at 3.95 ppm), CH₃-C = C-H (3H, d, J 1.5 Hz, 1.63 ppm and 1H, q, J 1.5 Hz, 5.35 ppm). On spin decoupling, the quartet at 5.35 ppm collapsed to a singlet, thus confirming the assignments. Bacogenin-A₁ yielded a diacetate, m.p. 220, C₃₄H₅₂O₆ (PMR: two acetyl singlets

^{*} Part IV in the series, "Chemical Examination of Bacopa monniera". CDRI Communication No. 1781. † Presented at the 8th International Symposium on the Chemistry of Natural Products, New Delhi, India (1972).

¹ CHATTERJI, N. RASTOGI, R. P. and DHAR, M. L. (1965) Indian J. Chem. 3, 24.

at 2.01 and 2.05 ppm) demonstrating the presence of two acylable hydroxy groups. The PMR spectrum of bacogenin-A₁ was also recorded after addition of trichloroacetyl isocyanate (TAI),² which showed two broad singlets for -CONH-CO at 8.46 and 8.51 ppm confirming the presence of two hydroxy groups in the molecule.

Bacogenin- A_1 formed a monooxime, m.p. 165°, $C_{30}H_{49}NO_4$, and a mono-2,4-dinitrophenylhydrazone, m.p. 110–112°, though in a low yield. The reduction of bacogenin A_1 with LiAlH₄ led to a trihydroxy derivative, m.p. 252°, $C_{30}H_{50}O_4$ (M⁺ 474) and on Wolff-Kishner reduction desoxobacogenin- A_1 , m.p. 215°, $C_{30}H_{50}O_3$ (M⁺ 458) was obtained. Both derivatives lacked carbonyl absorption in the IR spectrum. The oxidation of bacogenin- A_1 with *tert*. butyl chromate followed by Wolff-Kishner reduction furnished a desoxydesoxo derivative, m.p. 185°, $C_{30}H_{50}O$ (M⁺ 426), for which the hydroxyl and carbonyl absorptions were found to be absent in the IR spectrum. Thus, bacogenin- A_1 must be an unsaturated triterpenoid carrying 2 OH, a C=O and an inert O probably in the form of an ether (IR).

In order to define the basic skeleton, the LiAlH₄ product of bacogenin-A₁ was dehydrogenated with selenium and 6-hydroxy-1,2,5-trimethylnaphthalene (m.p. 140–142°) was identified³ along with some other naphthalene derivatives in minor quantities which could not be identified. Bacogenin-A₁, therefore, most probably belongs to the dammarane group of tetracyclic triterpenoids.

Functional Groups

The locations of the two hydroxy groups were established by the PMR and MS analysis of bacogenin- A_1 and its derivatives. In bacogenin- A_1 diacetate, the -CH-O quartet shifted downfield by more than 1 ppm and the -CH₂-O protons moved downfield by 0.5 ppm indicating the presence of a secondary and a primary hydroxyl groups in the molecule. An axial-axial and axial-equatorial coupling of 9.5 and 5 Hz respectively of the -CH-OH proton was consistent with 3β (e) position of the hydroxyl in the dammarane skeleton. This inference was also supported by the fact that out of the seven quaternary methyls (in the PMR of bacogenin- A_1) those located at 0.783 and 0.875 ppm moved to 0.866 ppm on acetylation. This convergence of methyl signals on acetylation is frequently observed for 4α and 4β methyls in the triterpenoids having a 3β -OH group.⁴⁻⁶

The MS of bacogenin- A_1 displayed a molecular ion peak at m/e 472 and other prominent peaks at m/e 457 (M-15), m/e 439 (M-15-18), m/e 207 corresponding to I and an ion at m/e 189 (II) generated by the loss of water.

The formation of fragment ions I and II demonstrated that CH₂OH, C=O, Me -C=C-H groups and the inert oxygen were all present in the remaining part of the molecule. An

² Trehan, I. R., Monder, C. and Bose, A. K. (1968) Tetrahedron Letters 67.

³ Fischer, F. G. and Seiler, N. (1959) Ann. 626, 185.

⁴ Lehn, J. M. and Ourisson, G. (1962) Bull. Soc. Chim. Fr. 1137.

⁵ Lehn, J. M. (1962) Bull. Soc. Chim. Fr. 1832.

⁶ Entwistle, N. and Pratt, A. D. (1968) Tetrahedron 24, 3949.

extremely intense peak at m/e 125 (base peak) has been assigned to the side chain (as in case of panaxadiol⁷) which, on further fragmentation, gave rise to m/e 107 by loss of H₂O (m* at m/e 91·4),^{7,8} and m/e 110 by loss of a Me.

The base peak at m/e 125 also persisted in the MS of bacogenin-A₁ diacetate, indicating that the side chain did not contain the -CH₂OAc group. Therefore, the primary hydroxyl group was fixed at C-18, the only position available in the molecule.

The keto group in a 5-membered ring, as indicated by the IR spectrum, could be placed at either C-15, C-16 and C-17 in ring D or in the side chain. The latter possibility was eliminated by the MS of bacogenin- A_1 derivatives devoid of keto groups, namely the LiAlH₄ product, desoxobacogenin- A_1 and desoxydesoxobacogenin- A_1 . They displayed intense base peaks at m/e 125 demonstrating that the side chain remains intact in these derivatives. The position 17 in ring D is ubiquitously occupied by the side chain in the tetracyclic triterpenoids and, therefore, the location of keto group was narrowed down to position 15 or 16. The former position was untenable on the gound that an α -CH₂OH group would have been eliminated as HCHO by retroaldol condensation^{8,9} during the reduction of bacogenin- A_1 . Since this did not happen, the keto group must be placed at position 16. This position being somewhat hindered, would also account for the low yield of oxime and DNP derivatives, reported above. The positions of the side chain and the carbonyl group were further confirmed by the analysis of the PMR spectrum of bacogenin- A_1 in pyridine d_5 , which showed (beside other signals) a 2H AB quarter (J 15 Hz) centered at 2·5 ppm and a 1H singlet at 2·6 ppm for -CH₂-CO-CH- grouping.

Structure of the Side Chain

The side chain must accommodate the remaining components of the molecule namely Me-C=CH grouping, 3 quaternary methyls, and an ether linkage. In this respect desoxydesoxobacogenin- A_1 was of particular interest as it carries no skeletal functional groups but an intact side chain. Its MS showed a pattern (Scheme 1) similar to that of bacogenin- A_1 with peaks at m/e 426 (M⁺), 411 (M-15), 393 (M-15-18), 191, 125 (base peak), 110 (125-15), 107 (125-18 m^* at 91·4).^{7.8}

The elemental composition of the fragment ion m/e 125 was calculated as $C_8H_{13}O$ from the percentage abundances of the ions at m/e 126 (P + 1) and 127 (P + 2). The side chain of this composition having a double bond (1660, 820 cm⁻¹) should, therefore, bear the ethereal oxygen (1080 cm⁻¹) in the form of an oxide ring.

SCHEME 1. MS PRODUCTS FROM BACOGENIN-A1.

The PMR spectrum of desoxydesoxobacogenin- A_1 displayed a Me-C=C-H grouping (3H, d, J 1.5 Hz, 1.6 ppm and 1H, q, J 1.5 Hz, 5.21 ppm) and eight quaternary methyls,

⁷ ELYAKOV, G. B., DZIZENKO, A. K. and ELKIN, Yu. N. (1966) Tetrahedron Letters 141.

AUDIER, H., BORY, S. and FÉTIZON, M. (1964) Bull. Soc. Chim. Fr. 1381.
BARTON, D. H. R. and DE MAYO, P. (1954) J. Chem. Soc. 887.

five of which manifested the same magnetic environment as 5 skeletal methyls (4a, 4β , 8β , 10β and 14a) of 20ζ -hydroxy-dammar-24-ene (3H, s at 0.816, 0.90; 0.975 and 6H, s, at 0.858 ppm). The remaining 3 methyls were much deshielded (3H, s at 1.23 and 6H, s at 1.30 ppm) evincing their presence on carbons bearing oxygen with additional deshielding by the double bond, the only functional group present in the molecule. Further, there was no signal for protons situated on carbon bearing oxygen function. This indicated that the ether bridge was through fully substituted carbon atoms. The tertiary nature of the ether linkage was in conformity with its inertness towards the usual cleavage reagents such as BF_3 -AC₂O, p-toluenesulphonic acid-AC₂O, p-toluenesulphonic acid-AC₂O

The double bond in the side chain was also resistant to the usual splitting reagents namely alk. KMnO₄, O₃ and OSO₄. However, diacetylbacogenin-A₁ formed an epoxide, $C_{34}H_{52}O_7$ (M⁺ 572, base peak m/e 141), m.p. 185°, on treatment with m-chloroperbenzoic acid. Its PMR spectrum showed singlets for a proton and a methyl group adjacent to an epoxide at 3·25 and 1·26 ppm respectively thereby confirming the relative positions of vinylic H and Me. These requisites could only be satisfied if the side chain has the structure A or B, which would also confer inertness on the ether linkage and the double bond. Regarding the stereochemistry at C-17, an α -configuration would be susceptible to epimerization on treatment with alkali because bacogenin-A₁ carries a carbonyl group at C-16. It was, however, recovered unchanged on alkali treatment showing that the side chain has a β -configuration as normally encountered in dammarane group of triterpenoids.

The structure for bacogenin- A_1 is, therefore, proposed as IIIA or IIIB. Because of the inertness of the double bond and the ethereal oxygen, it has not been possible to fix the position of the vinylic methyl group at C_{22} or C_{23} .

HO
$$CH_2OH$$
 $R = \begin{cases} A & O \\ B & O \end{cases}$

It is interesting that while attempting to cleave the double bond by treating diacetyl-bacogenin-A₁ with RuO₄, an unexpected hydroxylation took place leading to the formation of a diol, m.p. 138°, C₃₄H₅₄O₈ (M-60 at m/e 530). In its PMR spectrum the vinylic H and Me signals were replaced by singlets for CH-O at 3·73 ppm (shifted downfield by 1·36 ppm on acetylation) and a Me at 1·26 ppm. The PMR spectrum after addition of TAI showed two broad singlets at 8·60 and 9·00 ppm (CONH-CO-) confirming the presence of two hydroxy groups in the product. The diol could not be split by periodate probably due to the highly hindered nature of the glycol grouping. This, to our knowledge, appears to be the first example of a diol formation in reaction of RuO₄ with an olefin which is reported to give rise to dioxo compound.

EXPERIMENTAL

All m.ps were determined on Kofler block and are uncorrected. PMR spectra were recorded in CDCl₃ with TMS as internal standard. All the R_f s relate to TLC on silica gel plates.

Bacogenin-A₁. M.p. 242° (C_6H_6), $[\alpha]_D$ -70° (c 1%, CHCl₃). ν_{max}^{KBr} , 3410, 1730, 1660, 1450, 1375 (d), 1080, 820 cm⁻¹. PMR. ppm 0.783, 0.875, 0.958, 1.06, 1.26, 1.38, 1.53 (3H each s, 7 × Me), 1.63 (3H, d,

J 1·5 Hz, C=C-Me), 2·2 (3H, bs, CH₂-COCH), 3·18 (1H, q, J 9·5 and 5 Hz, CH-O-), 3·95 (2H, AB q, J_{AB} 11 Hz, CH₂-O-), 5·35 (1H, q, J 1·5 Hz C=C-H). PMR (pyridine-d₅): ppm 0·94, 1·02, 1·30, 1·47, 1·58 (3H each, s, 5 × Me), 1·16 (6H, s, 2 × Me), 1·79 (3H, d, J 1·5, C=C-Me), 2·5 (2H, AB q, J 15 Hz, CH₂-CO-), 2·60 (1H, s, CH-CO-), 3·39 (1H, t, J 8 Hz, CH-O-), 4·25 (2H, AB q, J 12 Hz, CH₂-O-), 5·33 (1H, q, J 1·5 Hz, C=C-H). MS: m/e 472 (M⁺), 457 (M-15), 439 (M-15-18), 207, 189, 125 (base peak), 110, 107 (125-18, m* at 91·4). (Found: C, 75·74; H, 10·8. C₃₀H₄₈O₄ requires: C, 76·27; H, 10·16%.)

Di-O-acetylbacogenin-A₁. M.p. 220°, $v_{\text{max}}^{\text{CHCl}_3}$, 1750, 1730, 1440, 1360, 1250, 1025, 970, 820 cm⁻¹. PMR. ppm 0·807 (6H, s, 2 × Me), 0·91, 1·1, 1·28, 1·38, 1·53 (3H, s, 5 × Me), 1·633 (3H, d, J 1·5 Hz, C=C-Me), 2·01, 2·05 (3H each, s, 2 × OCO Me), 2·13 (1H, s, CO-CH), 2·2 (2H, s, COCH₂), 4·45 (2H, AB q, J_{AB} 13 Hz, CH₂-O-CO-), 4·53 (1H, m, CH-O-CO-), 5·41 (1H, q, J 1·5 Hz, C=C-H).

LiAlH₄ reduction of bacogenin-A₁. The reduction product¹ was obtained as colourless needles from EtOAc, m.p. 252°. PMR. ppm 0.78, 0.866, 0.966, 1.06, 1.28, 1.33, 1.48 (3H each, s, 7 × Me), 1.61 (3H, d, J 1.5 Hz, C=C-Me), 3.21 (1H, m, CH-O-), 3.78 (2H, ABq, J 12 Hz, CH₂-O-), 4.38 (1H, m, CH-O-), 5.25 (1H, q, J 1.5 Hz, C=C-H).

Selenium dehydrogenation. Bacogenin-A₁ (1 g) was reduced with LiAlH₄ (1 g) in Et₂O. The resulting product was mixed with Se powder (2·5 g) and heated at 320° for 20 hr in N₂. The reaction mixture was exhaustively extracted with Et₂O and the ethereal solution was washed with NaOH solution (10%), aq. HCl (10%) and finally with H₂O. The solution was then evaporated and the residue (0·67 g) was chromatographed over Al₂O₃ (20 g). The Et₂O eluate (300 mg) was rechromatographed over alumina column and the major component (a) was further purified by preparative TLC in light petrol. Three UV-fluorescent zones were isolated in the usual manner. The product (a₃), 15 mg, was sublimed at 175°/1-2 mm and the sublimate crystallized from CHCl₃-light petrol, m.p. 140-142°, λ_{max} 223 (log ϵ 4·58), 275 (log ϵ 4·27), 282 (log ϵ 4·29), 291 (log ϵ 4·22), 326 (log ϵ 3·78) nm identified as 6-hydroxy-1,2,5-trimethylnaphthalene. The product (a₂), 18 mg, amorphous powder from MeOH, m.p. 156-160°, λ_{max} 229, 273, 308, 327 nm as well as other minor components could not be characterized.

Desoxobacogenin-A₁. Bacogenin-A₁ (150 mg) was suspended in diethylene glycol (15 ml) and then Na (400 mg) and N₂H₄-H₂O (99-100%, 2 ml) were added. The reaction mixture was heated at 110° for 3 hr, refluxed at 190° for 3 hr, cooled, diluted with H₂O (30 ml) and extracted with C₆H₆ (3 × 15 ml). The organic layer was evaporated and the residue was chromatographed over neutral Al₂O₃ (act. 3, 6 g). The C₆H₆-CHCl₃ (3:1) eluate (75 mg) crystallized from C₆H₆-cyclohexane, m.p. 215° (60 mg). $\nu_{\rm max}^{\rm KBr}$ 3400, 2900, 2850, 1198, 1010, 970, 820. PMR. ppm 0·73, 0·866, 1·28 (3H each, s, 3 × Me), 1·00, 1·33 (6H each, s, 4 × Me), 1·61 (3H, d, J 1·5 Hz, C=C-Me), 3·25 (1H, m, CH-O-), 3·80 (2H, AB q, J_{AB} 11 Hz, CH₂-O-), 5·30 (1H, q, J 1·5 Hz, C=C-H). MS. m/e 458 (M+), 443 (M-15), 425 (M-15-18), 409, 125 (base peak), 107 (125-18). (Found: C, 79·1; H, 10·60. C₃₀H₅₀O₃ requires: C, 78·6; H, 10·91%.)

Desoxydesoxobacogenin A_1 . To a solution of bacogenin- A_1 (100 mg) in CHCl₃-t-butanol (4:1) was added t-butyl chromate in CCl₄ (1%, 1·5 ml) over a period of 2 hr. The reaction mixture was allowed to stand for 1 hr, then worked up. The resultant product was dissolved in CHCL₃ and filtered through neutral Al_2O_3 . The filtrate was evaporated to a residue (85 mg) which showed on TLC one major product (R_f , 0·8 in C_6H_6 -cyclohexane, 1:1) and some minor impurities. The major component could not be crystallized and was found to be so unstable that it changed into a number of products within 2-3 days even on storing in a refrigerator. The residue as such was, therefore, refluxed with N_2H_4 - H_2O (99–100%) and N_6 in diethylene glycol as described earlier. The reaction product (68 mg) was chromatographed over neutral Al_2O_3 (act. 3, 4 g). The light petrol. eluate (35 mg) on crystallization from CHCl₃-MeOH yielded fine colourless needles (25 mg), m.p. 183–185°, v_{max}^{KBr} 2950, 2825, 1460, 1370, 1180, 1080, 970, 840, 820 cm⁻¹. PMR. ppm 0·81, 0·95, 1·23 (3H each, s, 3 × Me), 0·858, 1·30 (6H each, s, 4 × Me), 1·6 (3H, d, J 1·5 Hz, C=C-Me), 5·21 (1H, d, J 1·5 Hz, C=C-H). MS. m/e 426 (M⁺), 411 (M-15), 393 (M-15-18), 125 (base peak), 107 (125-18, m^* at 91·4).

RuO₄ oxidation of di-O-acetylbacogenin-A₁. Di-O-acetylbacogenin-A₁ (425 mg) in CCl₄ (10 ml) was cooled in ice and a solution of RuO₄ in CCl₄ (ca. 3%, 24 ml) was added dropwise with stirring. The mixture was stirred for 2 hr at 0° and for 2 hr at room temp. The excess of the reagent was decomposed with MeOH (1.5 ml) and the precipitated RuO₂ was filtered. The filtrate on evaporation gave a residue (450 mg) which

¹⁰ POLONSKY, J. (1951) Compt. Rend. 233, 93, 671.

showed one major component on TLC (R_f 0·18 in C₆H₆-MeOH 4%) along with some starting material. On its chromatography over silica gel (15 g), the CHCl₃ eluate yielded a pure product which crystallized from C₆H₆-light petrol., m.p. 138°, 180 mg. $\nu_{\rm max}^{\rm KB}$ 3400, 2900, 2825, 1730 1450, 1375, 1245, 1075, 1025, 980, 955. PMR. ppm 0·883 (6H, s, 2 × Me), 0·91 (3H, s, Me), 1·06 (3H, s, Me), 1·26 (6H, s, 2 × Me), 1·33 (3H, s, Me), 1·4 (3H, s, Me), 2.1 (6H, s, 2 × -OCO Me), 3·73 (1H, s, CH-O-), 4·38 (2H, d, J 2 Hz, CH₂-O-CO-), 4·56 (1H, m, CH-O-CO-). MS. (M⁺ not visible) m/e 530 (M-60), 519 (M-71), 502, 475, 470 (M-60-60), 459, 433, 415, 399, 373, 355, 329, 313, 189, 98. (Found: C, 69·50; H, 9·46. C₃₄H₅₄O₈ requires: C, 69·15; H, 9·15%.)

Acknowledgements—We thank Mr. J. Saran and his associates for microanalyses and Messrs. R. K. Mukherji, B. B. P. Srivastava and R. K. Singh for IR, PMR and MS respectively. We are also grateful to Professor S. Shibata, University of Tokyo, Japan, for PMR spectrum of bacogenin- A_1 in pyridine- d_5 .